
Page 1 of 17

COMP 2231 Assignment 3

T00666715

Tolga Olcay

Page 2 of 17

1. Stack using Linked List

Here is the result of a stack using a linked list. I use the same instructions for all the drivers that

use stacks.

As you can see, when we peek, the string is monkey because that was the last value pushed on

the stack.

When we pop and then print the stack, we can notice that monkey is removed from the stack.

Page 3 of 17

Now let me demonstrate how this works:

First Lets look at LinkStack

By using functions from the LinkedList and the LinkedUnorderedList, we can implement the

methods of the LinkStack via encapsulation. Lets look at LinkedUnorderedList, LinkedStack, and I

will also show you LinkedOrderedList (even though it is not necessary)

Page 4 of 17

Here you can see the RemoveFirst() function. It is used in the LinkStack in the pop() method.

As you can see I have also completed the removeLast() function even though it is not needed for

the LinkStack.

Page 5 of 17

The first() function in the LinkedList class is very useful for the pop() and peek() function in the

LinkStack. (I probably should have used the contains() function in the LinkedUnorderedList for

the addAfter() function, but I just thought of that now!)

Page 6 of 17

The isEmpty, size, and toString functions in the LinkedList class are all used in the LinkStack class

to findout if the stack is empty, find the size, and to print the stack.

Now lets look at the LinkUnorderedList:

Page 7 of 17

The addToFront and addToRear methods were both required to be completed as part of the

programming project, however, ONLY THE addToFront() function was used for the LinkStack.

Page 8 of 17

The AddAfter() function was also required to be completed as part of the programming project,

however it was not used for the LinkStack.

Now let me show you the HARDEST part of the assignment WHICH was not even used for the

LinkStack!:

THE LinkOrderedListClass!

Page 9 of 17

The add() function for this class was by far the hardest part. Below is a test driver used to test

out the ListOrderedList because I want to show you the extent of how it works:

As you can see it places the values in the List where they belong.

2. Stack using ArrayList

Page 10 of 17

As you can see, this driver is very similar to driver one. The main difference is that instead of

instead of creating a LinkStack, we created an ArrayStack! As you can see, monkey is not there

when we print the stack because, it was popped.

Now let me demonstrate how this works:

Lets look at the ArrayStack:

Page 11 of 17

We use functions from the ArrayList and ArrayUnoredredList classes in our methods.

As you can see, these methods don’t really show much how these work because it is

encapsulated by the ArrayUnorderedList class which extends the ArrayList Class. I will be

showing you how both of those classes work.

Page 12 of 17

ArrayUnorderedList extends the ArrayList class and is part of the programming Project

Our ArrayStack uses the addToFront method to add our objects to the front of the stack.

This other functions from the ArrayUnorderedList and ArrayStack use methods from the

ArrayList class:

Page 13 of 17

For example, the expandcapacity function is used by functions which add items to the list, so

that the list does not run out of space. If you noticed, removeFirst() is used in the pop() function

in ArrayStack.

The first() function is used in the peek(), and also the pop() method in the ArrayStack, allowing us to

save the value which is in the top of the stack and return.

Page 14 of 17

Page 15 of 17

The isEmpty and the toString functions from ArrayList are used in the ArrayStack to check the size of the

stack and to print the stack.

Now you understand how we can use the ArrayList and ArrayUnorderedList to create an ArrayStack.

3. Linked Queue

As you can see with our linkQueue driver, the string “tolga” is no longer in the queue when we print the

queue. That’s because “tolga” was the first string that was enqueued, so when we dequeue(), tolga is

removed from the queue.

Now, Lets view the LinkQueue class.

Page 16 of 17

As you can see, just like LinkStack, LinkQueue uses functions from the LinkList and the LinkUnorderedList

classes. I am able to re-use theses classes for my LinkStack and my LinkQueue via encapsulation.

As you can see when we dequeue, instead of using the removeFirst() function like we did for our stack,

we instead do removeLast(); since by doing so , we are removing the first value added to the list.

Since I already showed you how the LinkedList and the LinkedUnorderedList classes work, I will not be

pasting the screenshots again. (just scroll up)

4. ArrayQueue

Page 17 of 17

As you can see, driver Four creates a Arrayqueue and pushes strings onto the queue. Just like driver

three, we can notice that the string “tolga” is not present when we print the queue. That’s because it

was the first value to be enqueued, thus making it the first value to be dequeued.

Now lets look at the ArrayQueue class

As you can see, this is very similar to the LinkedQueue class, however the difference is that it creates an

ArrayList and uses functions from the arrayList and ArrayUnorderedList to create the ArrayStack.

Since we already went into detail on how ArrayList and ArrayUnorederedList classes work, you can scroll

up and compare the methods that are used for the queue.

You now have an idea of how ArrayQueue, LinkQueue, ArrayStack, and LinkStack work by implanting

LinkedLists, Linkunorderedlists, and ArrayLists and ArrayUnorderedLists!

