

COMP 2231 ASSIGNMNET 4

Tolga Olcay

T00666715

1. Backpain Analyzer

Here are two different examples of the backpain analyzer. As you can see, the analyzer navigates

through the tree to provide appropriate responses to the user depending if they have answered yes or

no.

But how does this work? Let me show you:

2. WHITEROCK DECISION TREE:

I made my own decision tree which is more complex than the back pain analyzer and has 22 children

nodes..

The goal of this program is to be a tour guide for people who are new to WhiteRock and offer them

suggestions on fun activities they can do based on the users preferences. The idea is to have it similar to

an authentic conversation with someone from WhiteRock, as if you were speaking to them, and they

were telling you what food you should try or place to visit etc.. This program works identically to the

Backpain analyzer except for the fact that instead of using the tree from input .txt, it uses a tree I

created called whiterock.txt

Let me show you what that looks like:

The numbers on the bottom are used to organize the tree based on the children of each node

As you can see there are much more nodes and paths in this tree because it asks more questions. Heres

a more simplified look of how this tree to give you a better idea of how it works:

Now you see..

3. Linked Binary Search Tree

Here is the implementation of a binary search tree.

We will add elements to this integer tree, print the tree, find the max/min integers in the tree, create

sub trees, and remove the min/max integers in the tree.

Here are our results. As you can see it prints the tree in order of the lowest to highest integers, that’s

because it prints using in-order. It accurately shows that the highest value is 99 and the lowest value is

1.

Then when we create the left sub tree and the right subtree you can see that the left subtree contains

all the values that are less than the root (12) and the right subtree contains all the values greater than

12. Notice how none of them contain 12? That’s because 12 was our root so when we create subtrees

based on its children, it will not be present in those subtrees.

Lets take a look at how this all works:

It should be noted that the completion of ArrayUnorderedList was required to print the trees, since

after all, an unordered array list is used to store all the values of the tree which are then converted to a

string.

