COMP 2231 ASSIGNMNET 4
Tolga Olcay

T00666715

1. Backpain Analyzer

zerjava - Eclipse IDE

<terminated> BackPainAnalyzer [Java Application] C:\Users\Tolga\ p2\pool\plugins\org.eclipse just].cpenjdk.hotsp
S0, you're having back pain.

Did the pain occur after a blow or jolt?

Do you have difficulty controlling your arms or legs?

Do you have pain or numbness in one arm or leg?

fou may have a sprain or strain.

ect Run Window Help
[ERH-0- Q- Q- HO-®5- P Hrfl-Care-
3 [] DecisionTreej.. [J) testjava 0] LinkedBinaryS... i WhiteRockTour... [J] WhiteRockTalyzerjava - Eclipse IDE
B 1 import java.io.®; sject Run Window Help
28/ SR -0 - %~ QG- @@ P 07 - B~ %o cp
4 * BackPainfnaylyzer demonstrates the use of a binary decision tree to O JJ] DecisionTresi.. estjova 1) LinkedBinaryS... 1 WhiteRockTour... 1) Whitef
5 * diagnose back pain. B -
I 1 import java.io.*;
7 public class BackPainAnalyzer 30 /4
8 4 BackPainAnaylyzer demonstrates the use of a binary decision tree to
EE 5 * diagnose back pain.
10 Asks questions of the user to diagnose a medical problem. &
1 7 public class BackPainanalyzer
128 public static void main(String[] args) throws FileNotFoundException B4
13 9
10 Asks questions of the user to diagnos dical problem.
14 System.out.println(“So, you're having back pain GUESTIONS OF ENE user To diagnose @ medical probiem
15 . . . 128 public static void main(String[] args) throws FileNotFoundException
16 DecisionTree expert = new DecisionTree("input.txt”); 13
17 expert.evaluate(); 12 System.out.println("So, you're having back pain.”);
18 } hs
19 } 16 DecisionTree expert = new DecisionTree("input.txt™);
20 17 expert.evaluate();
18 }
19 }
B Console Bl Console %

<terminated> BackPainAnalyzer [Java Application] C:\UsersTolgat.p2\poolplugins\org.eclipse;ust].openjd}
S0, you're having back pain.
Did the pain occur after a blow or jolt?

Do you have a fever?

Do you have a sore throat or runny nose?

See doctor to address symptoms.

Here are two different examples of the backpain analyzer. As you can see, the analyzer navigates
through the tree to provide appropriate responses to the user depending if they have answered yes or
no.

But how does this work? Let me show you:
RHF-0-Q-Q-HEG- BV PARE T - -0 G-t

[testjava [) "LinkedBinaryTreejava 3

root = new BinarylreeNode<|>(slement);
root.setleft(left.root);
root.setRight(right.root);

ye
* Returns a reference to the element at the root
*

* @return a reference to the specified target

* @throws EmptyCollectionException if the tree is empty
.

public T getRootElement() throus EmptyCollectionException

// To be completed as a Programming Project
if(root == null) {
throw new EmptyCollectionException(”LinkedBinaryTree");//if there is no root then there is nothing to return, throw exception
T result = root.getElement();// return the value of the root
return result; // temp
}
pun
= Returns a reference to the node at the root

“ @return a reference to the specified node
@throws EmptyCollectionexception if the tree is empty
*t

protected BinaryTreeliode<T> getRootNode() throws EmptyCollectionException

// To be completed as a Programming Project
if(root == null) {

throw new EmptyCollectionException(”LinkedBinaryTree”);
}

return root; // return the root itself

}

.
* Returns the left subtree of the root of this tree.
.
* @return a link to the left subtree fg the tree
*/
public LinkedBinaryTree<T> getleft()
{

// To be completed as a Programming Project

if(root == null)

throw new EmptyCollectionException(”LinkedBinaryTree”);

LinkedBinaryTree<T> result = new LinkedBinaryTree<T>();//create a new tree where its root is the child to the left of the root
result.root = root.getleft();

return result; // temp

}
1663 =
161 * Returns the right subtree of the root of this tree.
102 N
103 = @return a link to the right subtree of the tree
le4 *f

[J] testjava [} “LinkedBinaryTrecjava X

1005 I
101 * Returns the right subtree of the root of this tree.
102 N
103 = @return a link to the right subtree of the tree
184 *f
16852 public LinkedBinaryTree<T> getRight()
106 {
107 // To be completed as a Programming Project
108 if(root == null) {
189 throw new EmptyCollectionException(”LinkedBinaryTree");
110 }
111 LinkedBinaryTree<T> result = new LinkedBinaryTree<T>();
112 result.root = root.getRight();//create a new tree where its root is the child to the right of the root
113
114 return result; // temp
115 }
116
1178 I**
118 * Returns true if this binary tree is empty and false otherwise.
119 N
120 = @return true if this binary tree is empty, false otherwise
121 *f
2120 public boolean isEmpty()
123
124 return (root == null);
125 }
126
1278 =
128 * Returns the integer size of this tree.
129 “
138 * @return the integer size of the tree
131 */
21320 public int size()
133 {
134 // To be completed as a Programming Project
135 int result = root.numChildren() + 1;// the size of the root would be the number of all children and the root itself
136
137 return result; // temp
138 }
139
1483 =
141 = Returns the height of this tree.
142 “
143 * @return the height of the tree
144 */
1458 public int getHeight()
146 {
147 // To be completed as a Programming Project
148 int result = height(root)-1;
149 return result; // return the higght of the root minus the root itself
150 }
151
1528 I
153 * Returns the height of the specified node.
154 N
155 = @param node the node from which to calculate the height
156 * @return the height of the tree
157 *t

1585 private int height(BinaryTreelode<T> node)

[1] testjava [3) "LinkedBinaryTree java X

157 =
1589 private int height(BinaryTreeNode<T> node)
159
160 /# To be completed as a Programming Project
161 int result = 8;
162 if (node != null) {
163 if(height(node.getLeft()) >= height(node.getRight()) +1) {// create two subtrees of the left and right children of the node
164
165 result = height(node.getleft());//if the left subtree is greater, the nodes height is the height of the left subtree
166 Jelse {
167 result = height(node.getRight());// if the right is greater, then the height of the node must be the height of the right subtree
168 3
169 3
170
171 return result;
172 3
173
1748 4=
175 * Returns true if this tree contains an element that matches the
176 * specified target element and false otherwise
177 *
178 * @param targetElement the element being sought in this tree
179 * @return true if the element in is this tree, false otherwise
180 -
21812 public boolean contains(T targetElement)
182 {
183 // To be completed as a Programming Project
184 T result = find(targetElement);
185 if(result == null) { //if we cannot find that element in the tree, it must not be in the tree
186 return false;
187 3
188
189 return true; // temp
190 3
191
1928 ==
193 * Returns a reference to the specified target element if it is
194 * found in this binary tree. Throws a ElementNotFoundexception if
195 * the specified target element is not found in the binary tree.
196
197 * @paran targetElement the element being sought in this tree
198 * @return a reference to the specified target
199 * @throws ElementliotFoundException if the element is not in the tree
200 =/
22012 public T find(T targetElement) throws ElementNotFoundException
202 {
203 BinaryTreeliode<T> current = Findiode(targetElement, root);
204
205 if (current == null
206 throw new ElementNotFoundException(”LinkedBinaryTree™);
207
208 return (current.getElement());
209 3
210
2118 /=
212 * Returns a reference to the specified target element if it is
213 * found in this binary tree
214 N

B0~ @ -Q-H G- BIP S

[4] testjava 4] LinkedBinaryTreejava X

Baif-flr-ororor

= SNSRI A,
220 I
221 if (next == null)
222 return null;
223
224 if (next.getElement().equals(targetElement))
225 return next;
226
227 BinaryTreelode<T> temp = findNede(targetElement, next.getleft());
228
229 if (temp == null)
230 temp = findNode(targetElement, next.getRight());
return temp;

}

pE

* Returns a string representation of this binary tree showing

* the nodes in an ingrder fashion.

-

* freturn a string representation of this binary tree

=/

public String toString()

// To be completed as a Programming Project
ArrayUnorderedlist<T» treeArray = new ArrayUnorderedlist<T>();
inOrder(root, treeArray);

return treeArray.toString();

g
* Returns an iterator over the elements in this tree using the
* iteratorInOrder method

=

* @return an in order iterator over this binary tree

=/
public Iterator<T> iterator()
1
return iteratorInOrder();
}
pE
* Performs an ipgrder traversal on this binary tree by calling an
* overloaded, recursive ingrder method that starts with
* the root.
=
* @return an in order iterator over this binary tree
*/

public Tterator<Ts iteratorInOrder()

1
ArrayUnorderedList<T> templist = new ArrayUnorderedlist<Ts();
inOrder(root, templList);

return new Treelterator(templList.iterator());

2. WHITEROCK DECISION TREE:

| made my own decision tree which is more complex than the back pain analyzer and has 22 children
nodes..

[1] DecisionTree java [3] BackPainAnalyzerjava [3] LinkedBinaryTree.java input:txt [3] WhiteRockTourGuidejava
1
2 import java.io.FileNotFoundException;
3
4 public class WhiteRockTourGuide [f
5
e

iterock.

Asks questions of the user of their interests and recommends an activity to de in

EE public static void main(String[] args) throws FileNotFoundException
1 System.out.println("Welcome te White Rock stranger!"™);
2
3 DecisionTree expert = new DecisionTree("whiterock.twxt");
4 expert.evaluate();
s
SO
17
B Console X

<terminated> WhiteRackTourGuide [Java Application] C:\Users\Tolga\.p2\poolplugins\org.eclipse justj.openjdk.hatspot jre.fullwin32 x86_64_17.0.2.v202:
Welcome to White Rock stranger!

Are you hungry?

.

Do you enjoy the beach?

"
Do you enjoy the pier?
n

Do you enjoy art?

You should go to the art Meuseum in uptown. I am very certain that the girl who works there has a crush on me.

Gle Edit Source Refactor Navigate Search Project Run Window Help

i =2 Dia|m [z B0~ Q- Q@G-S TP il oo
) Project Explorer X =g) LinkedBinaryTree java inputtxt [3] WhiteRockTourGuidejava X [2] whiterack txt
B%Y §
5 eyt LS 2 import java.ie.FilelotFoundexception;
O AmayStack jsif (in j=f) 4 public class WhiteRockTour6uide [
T2 Assignment 1 5
e

[BackPainAnalyzer
=, JRE System Library [¢] Asks questions of the user of their interests and recommends an activity to do in Whitereck

P (d:faultpa:kage] 55 public static void main(String[] args) throws FileNotFoundException

i 10

jsif exceptions 11 System.out.println("Welcone to White Rock stranger!");

WhiteRockTourGuide java 12

@ BackPainAnalyzer.class 13 DecisionTree expert = new DecisionTree("whiterock.txt");
BackPainAnalyzerjava i'; N expert.evaluate()s
1) DecisionTree.class. PN
3] DecisionTreejava 17
input.tt
whiterock.tict
I WhiteRockTourGuide.class
1 exceptions.
T linkdeque
3 LinkedList
1 linkedstack
= searchtree
& Console X
<terminated> WhiteRockTourGuide [Java Application] C:\Users\Tolga'\.pZ\p: 2] dk.hotspot.jre.full 6_64_17.0. 0220201-1;

Welcome to White Rock stranger!
Are you hungry?

Do you want to eat something cold?
N

Do you enjoy seafood?

N

Do you enjoy italian food?

You should get a pizza from Emilio's. They have the best pizza because they use honey butter on the crust and it tastes so good.

O

E Consale ¢

<terminated> WhiteRockTourGuide [Java Application] C\Users\ Tolga\.p2\pool\plugins\crg.eclipse justj.openjdk. hotspot.jre.full win3.x86_64 17
Welcome to White Rock stranger!
Are you hungry?

Do you enjoy the beach?
Do you enjoy marine life?
Do you enjoy fishing?

You should wait till the tide goes out and play with the dungeness crabs in the tide pools. IT IS VERY FUN!

The goal of this program is to be a tour guide for people who are new to WhiteRock and offer them
suggestions on fun activities they can do based on the users preferences. The idea is to have it similar to
an authentic conversation with someone from WhiteRock, as if you were speaking to them, and they
were telling you what food you should try or place to visit etc.. This program works identically to the
Backpain analyzer except for the fact that instead of using the tree from input .txt, it uses a tree |
created called whiterock.txt

Let me show you what that looks like:

1p3

2Are you hungry?

3Do you enjoy the beach?

4Do you want to eat something cold?

5Do you enjoy the pier?

6Do you enjoy marine life?

7Do you enjoy sesfood?

8Would you like to eat desert?

9D you enjay art?
16 You should walk on the pier. They rebuilt it like a year ago because it had gotten wrecked during a storm.
11Yeu should build a sand castle.
12Do you enjoy fishing?
13 Do you enjoy italian food?
14You should get some Fish n' Chips.
15Do you enjoy drinking alcohol?
16 You should get some ice cream.
17 You should visit the ‘White Rock'. My friend Jske once climbed up on top of it and jumped off and sprained his leg. In PE he refused to run or do any sports because
15 You should go to the art Meuseum in uptown. I am very certain that the girl who works there has a crush on me.
19¥ou should wait till the tide goes out and play with the dungeness crabs in the tide pools. IT IS VERY FUN!
28You should fish off the pier.
21Yeu should get a crispy falafel from 'Crispy Falafel’ in uptown near the 351 bus stop.
22You should get a pizza from Emilio's. They have the best pizza because they use honey butter on the crust and it tastes so good.
23You should get a soda. They sell really nice mexican pepsi from the corner store across the WAG.
24You should grab a beer from the WAG.

1@ 17 18
11 19 2@

The numbers on the bottom are used to organize the tree based on the children of each node

As you can see there are much more nodes and paths in this tree because it asks more questions. Heres
a more simplified look of how this tree to give you a better idea of how it works:

Now you see..
3. Linked Binary Search Tree

Here is the implementation of a binary search tree.

lree/jsyt/test java - Eclipse IDE - u
Search Project Run Window Help
L RFRHE-O-R-QFEG- S IP AR

Ds T M| Tree java
package jsif;

testjava X = o |

public class test {

public static void main(String[] args) {
// TODO Auto-generated method stub
LinkedBinarySearchTree<Integer> tree = new LinkedBinarySearchTree<Integers();

tree.addElement(12);
tree.addELement(8);
tree.addElement(99) 5
tree.addELement(6);
tree.addElement(4);
tree.addElement(1);
tree.addelement(22);
tree.addElement(45);

System.out.println(tree);

+ tree. Findiax());
+ tree.findiin());

System.out.println("max : "
System.out.println("min

System.out.println("left tree i * + tree.getleft());
System.out.println("right tree: * + tree.getRight());

tree. removetiax();
tree. removettin()

System.out.println(tree);

System.out.println("max : " + tree.findMax()
System.out.println("min : " + tree.findMin());

tres. removeMax();
tres. removeMin();
System.out.println(tree);

"+ tree. Findhax());
" + tree. Findhin()

System.out.println("max :
System.out.println("min :

We will add elements to this integer tree, print the tree, find the max/min integers in the tree, create
sub trees, and remove the min/max integers in the tree.

hreejsjf/test java - Eclipse IDE
Search Project Run Window Help

1o SR E-0- Q-G H G-I P ARE =]
[3] DecisionTree. pnp Tree java [@) testjava x
L package gsji;
3 public class test {
4
ﬁ 56 public static void main(String[] args) {
6 // TODO Auto-generated method stub
7 LinkedBinarySearchTres<Integer> tree = new LinkedBinarySearchTree<Integer>();
9 tree.addElement(12);
18 tree.addElement(8);
B Console % EX R EERESE 220
<terminated> test (1) [Java Application] C:\Users\Tolga\.p2\p: I st dkhotspot jre.full.win32:x86_64_17.0.2:v20220201
1
a
[
8
12
22
45
29
max : 99
min 1

left tree : 1
a

6
H

right tree: 22
a

99

a
5
8
12

' 22
as
max : 45
min : 4
12

22

max : 22
min : 6

Here are our results. As you can see it prints the tree in order of the lowest to highest integers, that’s
because it prints using in-order. It accurately shows that the highest value is 99 and the lowest value is
1.

Then when we create the left sub tree and the right subtree you can see that the left subtree contains
all the values that are less than the root (12) and the right subtree contains all the values greater than

12. Notice how none of them contain 12? That’s because 12 was our root so when we create subtrees

based on its children, it will not be present in those subtrees.

Lets take a look at how this all works:

narySearchTree java - Eclipse IDE —
Run Window Help
FPiHE-O-Q-LU-FE- @I P ARE T H-FH- X2

| testjava 1) LinkedBinarySearchTreejava X
372 * the element with the highest value
* EmptyCollectionException if the tree is empty
s

public T findMax() throws EmptyCollectionException
T result = null;

if (root == null) {
throw new EmptyCollectionException(”LinkedBinarySearchTree");//if tree is empty there is no max

}
else {
BinaryTreeNode<T> curr = root;

while (curr.right != null)
curr = curr.right;//loop to find the rightmest child in the tree

result = curr.element;

}

return result;

Returns the left subtree of the root of this tree.

a link to the left subtree of the tree
s

public LinkedBinarySearchTree<T» getleft()

// To be completed as a Programming Project
if (root == null) {
throw new EmptyCollectionException(”LinkedBinarySearchTree");

LinkedBinarySearchTree<T> result = new LinkedBinarySearchTree<T>();
result.root = root.getLeft();//create a new tree where its root is the child to the left of the root

return result; // return the new subtree

Returns the right subtree of the root of this tree.

a link to the right subtree of the tree
*/
public LinkedBinarySearchTree<T> getRight()
{
/ To be completed as a Programming Project
if (root == null) {
throw new EmptyCollectionException(”LinkedBinarySearchTree");

LinkedBinarySearchTree<T> result = new LinkedBinarySearchTree<T>();//create a new tree where its root is the child to the right of the root
result.root = root.getRight();

return result; // temp

srySearchIree,java - kchpse IUE
Run Window Help
j‘i%‘;_vﬁvﬁv%vﬁ?@v@q"v@(:

[¥] testjava _m LinkedBinarySearchTreajava

il E eS|

3a7 *
3082 public T removeMax() throws EmptyCollectionException
309 {
318 /f{ To be completed as a Programming Project
311 T result = null;
312
313 if (isEmpty())
314 throw new EmptyCollectionException(”LinkedBinarySearchTree");//if the tree is empty, there is nothing to remove, throw exception
315 else {
316 if (root.right == null) //if there is no right child in the tree, remove the root and set the left child as the root
317 {
318 result = root.element;
319 root = root.left;
328 else {
321 BinaryTreeNode<T> parent = root;
322 BinaryTreeNode<T> curr = root.right;
323
324 while(curr.right != null) { //starting from the root, loop to find the right most child in the tree
325 parent = currj
326 curr = curr.right;
327
328 result = curr.element;//set result to rightmost child in the tree to have it removed
329 parent.right = curr.left;
338
331 3
332 modCount--;
333 }
334
335 return result; // temn
336 1
337
3389 /**
339 * Returns the element with the least value in the binary search
340 * tree. It does not remove the node from the binary search tree.
341 * Throws an EmptyCollectionException if this tree is empty.
342 *
343 * fireturn the element with the least value
344 * (@throws EmptyCollectionException if the tree is empty
345 =
4346 public T findMin() throws EmptyCollecticnException
347
348 // To be completed as a Programming Project
349 T result = null;
358
351 if (isEmpty()) {
352 throw new EmptyCollectionException(“LinkedBinarySearchTree”);
353 3}
354 else {
355 BinaryTreeNode<T> curr = root;
356
357 while (curr.left != null)//starting from the root, loop to find the leftmost child in the tree
3538 curr = curr.left;
359
368 result = curr.element;
361 }
362
363 return result;
364 1
265

It should be noted that the completion of ArrayUnorderedList was required to print the trees, since
after all, an unordered array list is used to store all the values of the tree which are then converted to a
string.

